Here is the introduction of the project quoted from the website
There is no alternative to integer programming when it comes to computing proven quality or even optimal solutions to large-scale hard combinatorial optimization problems. In practical applications, matrices often have special structures exploitable in decomposition algorithms, in particular in brance-and-price. This opened the way to the solution of mixed integer programs (MIPs) of enormous size and complexity, both from industry and within mathematics, computer science, and operations research.
Yet, as the state-of-the-art, branch-and-price is implemented ad hoc for every new problem. Various frameworks are very helpful in this respect, still, this requires a solid expert knowledge. This project aims at making a significant contribution towards a generic implementation of decomposition algorithms. As a longterm vision, a MIP solver should be able to apply a decomposition algorithm without any user interaction. A precondition for such an automation is the answer to important algorithmic and theoretical questions, among them:
- recognition of decomposable structures in matrices and/or MIPs
- development of a theory (and appropriate algorithms) for evaluating the quality of a decomposition
No comments:
Post a Comment